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Low-field magneto-resistance in a regular fractal model 
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School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, 
Tel Aviv University, Tel Aviv 69978, Israel 

Received 22 March 1989 

Abstract. We calculate the s c a h g  behaviour of the magneto-resistance of a regular 
three-dimensional (3D) fractal network model in a weak magnetic field. The method used 
is a discretised version of a previously described continuum theory. Exponents are calcu- 
lated that characterise the power-law dependence of both the transverse and the longitudinal 
magneto-resistance on the total size. Results are compared with a previously published 
prediction of scaling theory for the magneto-resistance near the percolation threshold. 

The Hall effect has been used extensively to investigate the metal-non-metal transition 
in a variety of disordered systems. An effective medium theory (EMT, Cohen and 
Jortner 1973, Stroud and Pan 1979, Stachowiak 1970), scaling theories (Shklovskii 
1977, Bergman 1983 and 1987, Bergman and Stroud 1985) and a simulation approach 
(Webman et a1 1975, Bergman et a1 1983) have been used to discuss the properties of 
the Hall effect in conductors with macroscopic disorder, i.e. composite conductors. 
Straley (1980) generalised the Cayley tree model to also apply to the Hall effect. The 
case of a two-dimensional, macroscopically inhomogeneous system, with or without 
disorder, was discussed in a number of articles (Juretschke et a1 1956, Straley 1980, 
Bergman 1983, Stroud and Bergman 1984), with the conclusion that the results for the 
bulk effective magnetotransport coefficients are exactly expressible in terms of the bulk 
properties at zero magnetic field. 

Bergman (1987) has reported on a new exact theory for the magneto-resistance 
( S p )  of a two-component isotropic composite and used it to construct a scaling theory 
for Sp of random composites. He showed that in the case of composite conductors 
in a low magnetic field, the effective Ohmic conductivity (U,) ,  Hall conductivity (A,) 
and the magneto-conductivity (Sa, ) ,  can be obtained without having to solve for the 
local electric potential 4 ( r )  in the presence of a magnetic field H. The expressions 
describing the different conductivities in the continuum case are (H parallel to z): 

aScr,b =- dVV4'""'Su(r)V4'"b'+ V I dVB,(r) I dV' BM(r') 
V ' I  

x ( f i x  V 4 ' O a ' ) ( f i  x V'4r(ob'): VV'G. (3 1 
Here, 4 ( O f '  is the local electric potential at zero magnetic field when a voltage drop is 
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applied to the system, that would result in a uniform electric field equal to the unit 
vector f if the system were homogeneous. Also, uM, uI and A M ,  A I  are the Ohmic and 
Hall conductivities of the two components, and Su( r )  is the local magneto-conductivity 
tensor (second order in the magnetic field). The step function t9,(r) equals 1 if regM 
and zero otherwise. In these expressions all the integrals are confined to the uM volume, 
except for the first integral of (3). The function G(r ,  r ' )  is the Green function for the 
Ohmic (H = 0) problem in the composite, + ' ( o b )  is shorthand for q5(r ' ) (ob)  and is a 
unit vector along the direction of H. Finally, a and b are two arbitrary unit vectors. 

In order to determine the critical behaviour of A, of an isotropic composite, Bergman 
er a1 (1983) realised the Hall problem on a two-component discrete lattice as follows: 
each element of the lattice is a triplet of identical conductors, with an Ohmic conduct- 
ance uI or rM, that lie along the coordinate axes, and which are electrically unconnected 
in the absence of a magnetic field H (figure l ( a ) ) .  In the presence of H along, say, 
the z axis, a Hall current will flow through a conductor in the x direction that is equal 
to the product of its Hall conductance ( A I  or A,) and the voltage across the y conductor 
of the same triplet. Two types of triplets are placed randomly at all the sites of a FCC 
lattice, and electrical connections are made at the centres of all the unit cell edges as 
well as the body-centre points (figure l ( b ) ) .  By making these connections, one obtains 
four simple cubic random resistor networks that are electrically unconnected but are 
strongly correlated with each other. Although the appearance of a number of uncon- 
nected networks is unphysical, this model nevertheless yields the correct critical 
behaviour for A, as well as for Sue in two dimensions ( 2 ~ ) .  Other simpler models fail 
in this respect (see Bergman 1983). We hope that the unphysical dichotomy of the 
networks into a number of unconnected pieces does not affect the critical behaviour 
in 3~ systems as well - this was indeed recently found to be true at least in the case 
of the low-field Hall effect (Bergman et a1 1989). 

In order to imitate in a simple way the percolating cluster in such a lattice, we 
used a regular fractal model proposed by Nagatani (1986b). This fractal is a 3~ version 

I b l  

Figure 1. Schematic drawing of a portion of the random resistor network used to realise 
the Hall effect in a discrete system in 3D. ( a )  A triplet of identical, unconnected mutually 
perpendicular conductors. All networks are constructed from such unit elements. ( b )  A 
FCC lattice of elementary triplets. The centre of each elementary triplet is denoted by an 
open circle. Electrical connections are denoted by full circles. The 3D network is composed 
of four unconnected simple cubic resistor networks marked as a, b, c, d. 



Low-field magneto-resistance in a regular fractal model 363 1 

of a 2~ variant of the Mandelbrot-Koch curve (Nagatani 1986a). It is shown in figure 
2 along with its backbone, and has fractal dimensions that are very close to those of 
the percolating cluster and its backbone in a real random network at its percolation 
threshold. It consists of four unconnected networks, three of which are identical. Each 
of these is connected to the outside world by a pair of terminals lying along the x, y 
or z directions. The fourth network is an internal structure and has no connections 
to the outside. Thus, it does not affect either a, or A, but only Sa,. Like the percolating 
cluster of a random network, this fractal includes three types of bonds, namely singly 
connected, multiply connected and dangling bonds. In order to perform calculations 
on this model, we need the discrete network version of (1)-(3), generalised so as to 
apply to systems with cubic rather than isotropic symmetry. In continuum materials 
with cubic symmetry, the current density up to O ( H 2 )  is given (see Seitz 1950) by 

0 H,  - H y  

I 
b 

I 

I 
I 
e 

Figure 2. ( a )  The three-dimensional, L = 3 fractal model used in our calculations of the 
weak-field magneto-conductance. This is the same as the fractal used by Nagatani (1986b) 
for calculations of the weak-field Hall effect. It is made of 15 elementary triplets,.marked 
by open circles, that conspire to form four unconnected networks. Three of those (full 
lines, bold full lines and bold broken lines) are essentially identical though differently 
oriented in space, each one having two external terminals along one of the coordinate 
axes. The fourth network (broken lines) is different-it is entirely internal with no connec- 
tions to the outside world. Nevertheless, it contributes to the magneto-conductance. 

( b )  The percolating backbone of ( a ) .  It is composed of three identical, electrically 
unconnected, networks. 
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Here, RH is the Hall coefficient ( A  = R,a2H) ,  I is the unit matrix and ( a ,  P, y )  are 
three independent coefficients which characterise the second-order terms in H. Choos- 
ing H parellel to z, we can identify the longitudinal and transverse magneto-conduc- 
tivities, respectively, as: Sal1 = ( a  + P + y ) H 2  and S a ,  = a H 2 .  However, if we choose 
H parallel to ( x + y + z ) ,  then we find 6a,, = (a + P + f y ) H 2  and S a ,  = ( a  + i y ) H 2 .  The 
fact that these differ from the previous expressions is due to the cubic symmetry. In 
an isotropic material, there are only two independent H 2  coefficients ( y = 0 )  and 
consequently Sall and Sa,  do not depend on the direction of HT. 

In our discrete lattice, where each bond lies along one of the coordinate axes; we 
assume the following form for the current through a bond a, by analogy with the 
continuum expression (4): 
JLfj = a,( 1 - eau vbf) + A ,  ( 1 - e,w v p (  ri, U,  6 )  + ( c ~ , H ~  + 7,~: vhf j 

d e  a 

+ 1 PaHaH,-Viif-). ( 5 )  
; E a  

Here U = (1 - aM/aI), w = (1 - A M / A l )  and ea is a step function which is equal to 
1 if a is a aM bond and equal to zero otherwise. The magnetic field component along 
bond a is Ha,  and (g, a, 6 )  = f i e  ( a  x 6 )  is the triple product of the unit vectors fi, a, 6 
lying along H, a, a'. The relation a" E a signifies that the two bonds belong to the same 
basic triplet. Thus, if H is also along a coordinate axis, there is only one non-zero 
term in the first sum, i.e. when a is perpendicular to both a" and H. 

From this model one obtains the following expressions, analogous to (1)-(3) (see 

Here, V?' is the voltage drop along bond a in the absence of a magnetic field when 
the average electric field is the unit vector e. The symmetric matrix r a b  is the analogue 
of the tensor VV'G and has the following physical significance: it is the voltage induced 
along the bond b when a current of unit strength is injected at one end and extracted 
at the other end of bond a. All this must be done while holding the boundary at a 
fixed potential. 

In a translationally invariant system (e.g. a uniform lattice), summing Tab over all 
bonds a yields zero (see Bergman and Kantor 1981). However, since our fractal does 
not possess this property, such a sum would usually not vanish. In (6)-(8) N = L3 
where L is the linear size of the sample. The first two terms on the right-hand side of 
(8) involve the three independent magneto-conductance coefficients of the unit 

i The precise form of (4) can be obtained by expanding J ,  as follows: J, = a$, + A,,kH,& + 7,krH,HAE, + . . . , 
and analysing the form of 7 (which is similar to the elastic stiffness tensor Cilkl) under the various point 
symmetries. It then follows that 7 has only two independent components for an isotropic material, and 
three such components for a cubic material. 



Low-jield magneto-resistance in a regular fractal model 3633 

element-a, p, y. They are analogous to the first term on the RHS of (3). The last term 
of (8) is analogous to the last term of (3)-it is quadratic in the difference between 
the two Hall conductivities and arises when the first-order induced Hall currents 
produce a first-order correction to the local voltages, and these in turn produce a 
second-order Hall correction to the local currents. 

In our model we assume that one of the components is a perfect insulator (a,  = A ,  = 
Sa, = 0), and therefore all properties are determined by clusters of the good conductor 
wM, A M  and SaM . We use the regular fractal model described above to represent these 
clusters and we now have to find the bond voltages V?’ and Green matrix rab for 
all bonds of our fractal. Note that although V?’ # 0 only for bonds of the backbone, 
Tab  # 0 also for dangling bonds and for bonds on the non-percolating internal network. 
Choosing appropriate sets of unit vectors e , f  and k, we calculate both 6a,,, and Suei 
in terms of aM, A M ,  aM,  PM and yM. 

Our purpose is to calculate Sae both for the elementary ( L  = 1) fractal of figure 
l ( a ) ,  and for the L= 3 fractal of figure 2(a) ,  in order to determine how it scales with 
the size L. Unfortunately, it turns out that the ( A M  - A J 2  term of (8) vanishes for L = 1 
when we use Tab  as defined above, namely with fixed-potential boundary conditions. 
In order to permit some non-trivial estimate of the scaling behaviour of this term, we 
therefore used a different rab, defined by using zero-normal-current boundary condi- 
tions. In the limit of large L both types of Green matrices should lead to the same 
results since they will only differ appreciably near the surface. 

The results for eSa,f which depend on the choice of the three unit vectors e,f; I? 
were found to contain only three independent coefficients, so that the tensor Sa, for 
the network could be expressed by an equation like (4), but with bulk effective 
magneto-conductivity coefficients a,, Pel  ye .  This is not altogether surprising in view 
of the cubic structure of the fractal, although its point symmetry is lower than the full 
cubic symmetry group. From our calculations we find that the scaling behaviour with 
L is most simply expressed in terms of certain linear combinations of a,, Pe and ye,  
namely 

where ?= t /  U is the critical exponent for the Ohmic conductivity, iM = t M /  U is a new 
critical exponent defined by Bergman (1987) for the second-order contribution in the 
Hall effect ( A 2  term in (8)), U is the percolation correlation length critical exponent, 
and a,, a,, a3 and a4 turned out to be corrections to’the asymptotic scaling behaviour. 
In our model we get 

105 In - In, 
In 3 In 3 

a ---2.97 6, = - = 2.91 2 -  

In? In% 
In 3 In 3 

a, = -= 2.65 a4 = - = 2.38. 
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If we choose the magnetic field along, say, the z axis, and express the transverse and 
the longitudinal magneto-conductivities of the fractal in terms of those of the good 
conductor ( SaM, and SU,I I ) ,  then the leading terms, characterising the effective mag- 
neto-conductivities, are 

Finally, since experiments directly measure the magneto-resistance Sp instead of Su, 
we note that the Hall conductivity enters again when we express the relation between 
them ( H  parallel to z):  

The asymptotic behaviour of Spe was thus found to be 

In (13), pM = 1/UM and SpM is the magneto-resistance of the good conductor. 
Using finite-size scaling (Stauffer 1985), (11) and (13) can be written as functions 

of Ap 3 IpM-pcI (here pM is the volume fraction of the good conductor and pc is its 
percolation threshold) when Ap << 1 and L = CO: 

Equations (14) can be compared with a previously published prediction of a scaling 
theory (Bergman 1987). In that paper Bergman assumed that all the integrals (1)-(3) 
depend upon the same scaling variable and a scaling ansatz was written for the 
asymptotic form of (1)-(3) for the case uM >> U, and Ap << 1. In the case of a perfect 
insulator the same asymptotic form is obtained in our model with t as the leading 
exponent for the magneto-conductivity. Also, Bergman defined two new exponents, 
t M ,  and tMll, to characterise the behaviour of the A', term of (3) for the transverse 
and longitudinal magneto-conductivities, respectively. In our model, we get fMI = 
fMil  = rM = 2.24 (see equation (10)). We note that the first term on the RHS of (13) is 
a simple average of the longitudinal and transverse magneto-resistivities of the conduct- 
ing component, with the ratio 1 : 2. This appears to result from the fact that the local 
electric field in the fractal is aligned with the various directions x, y ,  z with equal 
likelihood. We also note that even if SpM,= SpMl~=O, as would be the case for a 
one-band, free-electron-gas conductor, our non-uniform fractal model will have both 
Spe,fO and Spel l#O due to the second-order Hall effect (the second term of (13)). 
Also, in our model we always get Spel( = Sp,,, even if in the conducting component 
we had SpM, # 6pMil. 
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To summarise, we studied the scaling behaviour of the weak-field magneto-resist- 
ance on a regular fractal model. Second-order contributions in the magnetic field were 
included. We found that the effective magneto-conductivity of the fractal network can 
be characterised by three independent coefficients, which are related to the transverse 
and longitudinal magneto-conductivities, when N points in different directions. 
Exponents characterising the critical behaviour of the magnetotransport were calculated 
including, for the first time, the new critical exponent rM = 2.24 which characterises 
the weak-field magneto-conductance. 

The finite-size scaling exponents allow the values of a physical quantity at different 
length scales to be related to each other. This often results when a renormalisation 
group transformation is applicable that replaces a finite portion of the system by a 
new unit element. The possibility of doing this in the case of the Ohmic and the Hall 
conductivities is related to the fact that the sums in ( 6 )  and (7) can be separated rather 
easily into partial sums over different subsystems, apart from unimportant interaction 
terms at the interfaces. In the case of the magnetoconductivity, the sums in (8)  cannot 
be separated in this way because the Green matrix Tab is long ranged. Since it decreases 
only as the inverse cube of the distance between a and b, the double sum is highly 
non-local, and always includes pairs of bonds from different subsystems. For this 
reason, it was not possible to construct an exact real-space renormalisation group for 
the magnetoconductance even on the simple fractal model considered here. 

We note also that rab can connect bonds that are not on the backbone or not even 
on a percolating cluster, e.g. the internal network. Therefore we had to consider all 
bonds of the fractal network, including those on dangling ends and on finite, non- 
percolating clusters. 

We have reported here on the first calculation of scaling behaviour of the magneto- 
conductance in a 3~ system. We hope that this will stimulate further efforts. Still 
needed is a calculation of scaling behaviour near a 3~ percolation threshold as well 
as some careful experiments. 
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